Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Anal Chim Acta ; 1299: 342449, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38499430

RESUMO

Antifouling biosensors capable of preventing protein nonspecific adhesion in real human bodily fluids are highly sought-after for precise disease diagnosis and treatment. In this context, an enhanced split-type photoelectrochemical (PEC) aptasensor was developed incorporating a four-armed polyethylene glycol (4A-PEG) to construct a robust antifouling coating, enabling accurate and sensitive bioanalysis. The split-type PEC system involved the photoelectrode and the biocathode, effectively separating signal converter with biorecogniton events. Specifically, the TiO2 electrode underwent sequential modification with ZnIn2S4 (ZIS) and polydopamine (PDA) to form the PDA/ZIS/TiO2 photoelectrode. The cathode substrate was synthesized as a hybrid of N-doped graphene loaded with Pt nanoparticles (NG-Pt), and subsequently modified with 4A-PEG to establish a robust antifouling coating. Following the anchoring of probe DNA (pDNA) on the 4A-PEG-grafted antifouling coating, the biocathode for model target of cancer antigen 125 (CA125) was obtained. Leveraging pronounced photocurrent output of the photoelectrode and commendable antifouling characteristics of the biocathode, the split-type PEC aptasensor showcased exceptional detection performances with high sensitivity, good selectivity, antifouling ability, and potential feasibility.


Assuntos
Incrustação Biológica , Técnicas Biossensoriais , Humanos , Polietilenoglicóis , Incrustação Biológica/prevenção & controle , Técnicas Eletroquímicas , Processos Fotoquímicos
2.
Anal Chem ; 96(8): 3679-3685, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38353671

RESUMO

Recently, organic photoelectrochemical transistor (OPECT) bioanalysis has become a prominent technique for the high-performance detection of biomolecules. However, as a sensitive index of the OPECT, the dynamic regulation transconductance (gm) is still severely deficient. Herein, this work reports a new photosensitive metal-organic framework (MOF-on-MOF) heterostructure for the effective modulation of maximum gm and natural bienzyme interfacing toward choline detection. Specifically, the bidentate ligand MOF (b-MOF) was assembled onto the UiO-66 MOF (u-MOF) by a modular assembly method, which could facilitate the charge separation and generate enhanced photocurrents and offer a biophilic environment for the immobilization of choline oxidase (ChOx) and horseradish peroxidase (HRP) through hydrogen-bonded bridges. The transconductance of the OPECT could be flexibly altered by increased light intensity to maximal value at zero gate bias, and sensitive choline detection was achieved with a detection limit of 0.2 µM. This work reveals the potential of MOF-on-MOF heterostructures for futuristic optobioelectronics.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Peroxidase do Rábano Silvestre/química , Colina , Técnicas Biossensoriais/métodos
3.
ACS Sens ; 9(3): 1525-1532, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38377562

RESUMO

Peptides with distinct physiochemical properties and biocompatibility hold significant promise across diverse domains including antifouling biosensors. However, the stability of natural antifouling peptides in physiological conditions poses significant challenges to their viability for sustained practical applications. Herein, a unique antifouling peptide FFFGGGEKEKEKEK was designed and self-assembled to form peptide nanoparticles (PNPs), which possessed enhanced stability against enzymatic hydrolysis in biological fluids. The PNP-coated interfaces exhibited superior stability and antifouling properties in preventing adsorption of nonspecific materials, such as proteins and cells in biological samples. Moreover, a highly sensitive and ultralow fouling electrochemical biosensor was developed through the immobilization of the PNPs and specific aptamers onto the polyaniline nanowire-modified electrode, achieving the biomarker carcinoembryonic antigen detection in complex biofluids with reliable accuracy. This research not only addresses the challenge of the poor proteolytic resistance observed in natural peptides but also introduces a universal strategy for constructing ultralow fouling sensing devices.


Assuntos
Incrustação Biológica , Técnicas Biossensoriais , Nanopartículas , Nanofios , Incrustação Biológica/prevenção & controle , Peptídeos/química , Nanofios/química
4.
Anal Chem ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38343064

RESUMO

Advanced antifouling biosensors have garnered considerable attention for their potential for precise and sensitive analysis in complex human bodily fluids. Herein, a pioneering approach was utilized to establish a robust and versatile photoelectrochemical aptasensor by conjugating a zwitterionic peptide with a DNA strand. Specifically, the branched zwitterionic peptide (BZP) was efficiently linked to complementary DNA (cDNA) through a click reaction, forming the BZP-cDNA conjugate. This intriguing conjugate exploited the BZP domain to create an antifouling biointerface, while the cDNA component facilitated subsequent hybridization with probe DNA (pDNA). To advance the development of the aptasensor, an upgraded PDA/HOF-101/ZnO ternary photoelectrode was designed as the signal converter for the modification of the BZP-cDNA conjugate, while a bipyridinium (MCEPy) molecule with strong electron-withdrawing properties was labeled at the front end of the pDNA to form the pDNA-MCEPy signal probe. Targeting the model of mucin-1, a remarkable enhancement in the photocurrent signal was achieved through exonuclease-I-aided target recycling. Such an engineered zwitterionic peptide-DNA conjugate surpasses the limitations imposed by conventional peptide-based sensing modes, exhibiting unique advantages such as versatility in design and capability for signal amplification.

5.
Anal Chim Acta ; 1283: 341948, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977778

RESUMO

The challenge of heavy biofouling in complex sweat environments limits the potential of electrochemical sweat sensors for noninvasive physiological assessment. In this study, a novel semi-interpenetrating hydrogel of PSBMA/PEDOT:PSS was engineered by interlacing PEDOT:PSS conductive polymer with zwitterionic PSBMA network. This versatile hydrogel served as the foundation for developing an anti-fouling wearable molecular imprinting sensor capable of sensitive and robust detection of tryptophan (Trp) in complex sweat. The incorporation of PEDOT:PSS conductive polymer into the semi-interpenetrating hydrogel introduced diverse physical crosslinks, including hydrogen bonding, electrostatic interactions, and chain entanglement. This incorporation considerably boosted the hydrogel's mechanical robustness and imparted commendable self-healing property. At the same time, the synergistic coupling between the well-balanced charge of the zwitterionic network and the high conductivity of the PEDOT:PSS polymer facilitated efficient charge transfer. The formation of the desired molecular imprinting membrane of semi-interpenetrating hydrogel was triggered by self-polymerization of dopamine (DA) in the presence of Trp. The designed biosensor demonstrated good sensitivity, selectivity and stability in detecting the target Trp. Notably, it also exhibited exceptional anti-fouling abilities, allowing for accurate Trp detection in complex real sweat samples, yielding results comparable to commercial enzyme-linked immunoassay (ELISA).


Assuntos
Incrustação Biológica , Impressão Molecular , Dispositivos Eletrônicos Vestíveis , Hidrogéis/química , Suor/química , Incrustação Biológica/prevenção & controle , Triptofano/análise , Polímeros/química
6.
Biosens Bioelectron ; 242: 115724, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37801836

RESUMO

Artificial solid-state nanochannels have aroused intense interests in biosensors and bioelectronics because of their special architectures. Herein, we pioneered an ingenious approach of target-triggered cascade signal amplification in porous anodic aluminum oxide (AAO) nanochannels for ultrasensitive photoelectrochemical (PEC) DNA bioanalysis. In the design, AAO nanochannels were modified initially with capture DNA (cDNA) and then incorporated with a photoelectrode, yielding the desired architecture of highly ordered nanoarrays on top of the signal transducer. For target DNA (tDNA) probing, exonuclease III (Exo-III) mediated target recycling (ETR) was first activated to generate plenty of output DNA (oDNA) fragments. After oDNA and the conjugate of Au-labeled probe DNA (Au-pDNA) were anchored within the nanochannels via DNA hybridization, in-situ synthesis of Ag shells on tethered Au nanoparticles was conducted. The resulting large-sized Au@Ag core-shell nanostructure within the nanochannels would cause conspicuous blocking effect to hinder the transportation of electrons accessing the photoelectrode. Since the signal inhibition was directly related to tDNA concentration, an innovative nanochannels PEC DNA assay was exploited and qualified for ultrasensitive detection. The anti-interference ability of this platform was also emphasized by the split AAO membrane for biological incubation without participation of the photoelectrode. This featured nanochannels PEC strategy with cascade amplification launched a novel detecting platform for trace levels of DNA, and it could spark more inspiration for a follow-up exploration of other smart nanochannels PEC bioassays.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ouro/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química , DNA/análise , Óxido de Alumínio , Limite de Detecção
7.
Anal Chem ; 95(37): 14119-14126, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37683257

RESUMO

The building of practical biosensors that have anti-interference abilities against biofouling of nonspecific proteins and biooxidation of reducing agents in actual biological matrixes remains a great challenge. Herein, a robust photoelectrochemical (PEC) biosensor capable of accurate detection in human serum was pioneered through the integration of a new engineered branching peptide (EBP) into a synergetic dual-photoelectrode system. The synergetic dual-photoelectrode system involved the tandem connection of a C3N4/TiO2 photoanode and a AuPt/PANI photocathode, while the EBP as a dual-functional antifouling and recognition probe featured an inverted Y-shaped configuration with one recognition backbone and two antifouling branches. Such an EBP enables a simple procedure for electrode modification and an enhanced antifouling nature compared to a regular linear peptide (LP), as theoretically supported by the results from molecular dynamics simulations. The as-developed PEC biosensor had a higher photocurrent response and a good antioxidation property inherited from the photoanode and photocathode, respectively. Targeting the model protein biomarker of cardiac troponin I (cTnI), this biosensor achieved good performances in terms of high sensitivity, specificity, and anti-interference.


Assuntos
Incrustação Biológica , Humanos , Incrustação Biológica/prevenção & controle , Peptídeos , Troponina I , Antioxidantes , Eletrodos
8.
Food Chem ; 425: 136382, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37276664

RESUMO

We report an electrochemiluminescence (ECL) sensor for Salmonella detection based on allosteric probe as a bio-recognition element and CRISPR/Cas12a as a signal amplification strategy. In the presence of Salmonella, the structure switching occurs on allosteric probes, resulting in their hybridization with primers to trigger isothermal amplification. Salmonella is then released to initiate the next reaction cycle accompanying by generating a large amount of dsDNA, which are subsequently recognized by CRISPR-gRNA for activating the trans-cleavage activity of Cas12a. Furthermore, the activated Cas12a can indiscriminately cut the ssDNA which is bound to the electrode, enabling the release of the ECL emitter porphyrinic Zr metal - organic framework (MOF, PCN-224) and exhibiting a decreased ECL signal accordingly. The linear range is 50 CFU·mL-1-5 × 106 CFU·mL-1 and the detection limit is calculated to be 37 CFU·mL-1. This method sensitively detects Salmonella in different types of real samples, indicating it is a promising strategy for Salmonella detection.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Sistemas CRISPR-Cas , Primers do DNA , DNA de Cadeia Simples , Eletrodos , Salmonella/genética
9.
Anal Chem ; 95(19): 7723-7734, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37133978

RESUMO

Accurate identification of cancer cells is an essential prerequisite for cancer diagnosis and subsequent effective curative interventions. The logic-gate-assisted cancer imaging system that allows a comparison of expression levels between biomarkers, rather than just reading biomarkers as inputs, returns a more comprehensive logical output, improving its accuracy for cell identification. To fulfill this key criterion, we develop a compute-and-release logic-gated double-amplified DNA cascade circuit. This novel system, CAR-CHA-HCR, consists of a compute-and-release (CAR) logic gate, a double-amplified DNA cascade circuit (termed CHA-HCR), and a MnO2 nanocarrier. CAR-CHA-HCR, a novel adaptive logic system, is designed to logically output the fluorescence signals after computing the expression levels of intracellular miR-21 and miR-892b. Only when miR-21 is present and its expression level is above the threshold CmiR-21 > CmiR-892b, the CAR-CHA-HCR circuit performs a compute-and-release operation on free miR-21, thereby outputting enhanced fluorescence signals to accurately image positive cells. It is capable of comparing the relative concentrations of two biomarkers while sensing them, thus allowing accurate identification of positive cancer cells, even in mixed cell populations. Such an intelligent system provides an avenue for highly accurate cancer imaging and is potentially envisioned to perform more complex tasks in biomedical studies.


Assuntos
MicroRNAs , Neoplasias , Compostos de Manganês , Óxidos , DNA , MicroRNAs/genética , Biomarcadores , Neoplasias/diagnóstico por imagem
10.
Anal Chem ; 95(23): 8879-8888, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37252785

RESUMO

CRISPR/Cas12a has been believed to be powerful in molecular detection and diagnostics due to its amplified trans-cleavage feature. However, the activating specificity and multiple activation mechanisms of the Cas12a system are yet to be elucidated fully. Herein, a "synergistic activator effect" is discovered, which supports an activation mechanism that a synergistic incorporation of two short ssDNA activators can promote the trans-cleavage of CRISPR/Cas12a, while either of them is too short to work independently. As a proof-of-concept example, the synergistic activator-triggered CRISPR/Cas12a system has been successfully harnessed in the AND logic operation and the discrimination of single-nucleotide variants, requiring no signal conversion elements or other amplified enzymes. Moreover, a single-nucleotide specificity has been achieved for the detection of single-nucleotide variants by pre-introducing a synthetic mismatch between crRNA and the "helper" activator. The finding of "synergistic activator effect" not only provides deeper insight into CRISPR/Cas12a but also may facilitate its expanded application and power the exploration of the undiscovered properties of other CRISPR/Cas systems.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , DNA de Cadeia Simples , Nucleotídeos , RNA Guia de Sistemas CRISPR-Cas
11.
Anal Chim Acta ; 1243: 340811, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36697176

RESUMO

To establish protein enzyme-free and simple approach for sensitive detection of single nucleotide polymorphisms (SNPs), the nucleic acid amplification reactions were developed to reduce the dependence on protein enzymes (polymerase, endonuclease, ligase). These methods, while enabling highly amplified analysis for the short sequences, cannot be generalized to long genomic sequences. Herein, we develop a protein enzyme-free and general SNPs assay based on asymmetric MNAzyme probes. The multi-arm probe (MNAzyme-9M-13) with two asymmetric recognition arms, containing a short (9 nt) and a long (13 nt) arm, is designed to detect EGFR T790 M mutation (MT). Owing to the excellent selectivity of short recognition arm, MNAzyme-9M-13 probe can efficiently avoid interferences from wild-type target (WT) and various single-base mutations. Through a one-pot mixing, MNAzyme-9M-13 probe enables the sensitive detection of MT, without protein enzyme or multi-step operation. The calculated detection limit for MT is 0.59 nM and 0.83%. Moreover, this asymmetric MNAzyme strategy can be applied for SNPs detection in long genomic sequences as well as short microRNAs (miRNAs) only by changing the low-cost unlabeled recognition arms. Therefore, along with simple operation, low-cost, protein enzyme-free and strong versatility, our asymmetric MNAzyme strategy provides a novel solution for SNPs detection and genes analysis.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Polimorfismo de Nucleotídeo Único , Técnicas Biossensoriais/métodos , Limite de Detecção
12.
Chem Commun (Camb) ; 59(1): 63-66, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36448516

RESUMO

An ingenious strategy with the integration of a zwitterionic peptide into a two-photoelectrode system was reported to construct an advanced photoelectrochemical immunosensing platform. The strategy has endowed the platform with both excellent photoelectric properties and an antifouling ability, and was capable of accurate and sensitive detection of target biomarkers in biological specimens.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Imunoensaio , Limite de Detecção , Peptídeos
13.
Anal Chim Acta ; 1236: 340593, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36396242

RESUMO

Photocathodic immunosensors generally exhibit fortified anti-interference abilities than photoanodic ones against the detection in biological specimens. Yet, the weak photocurrent signals of the photocathodes have limited evidently the detection performance. Herein, an efficient and feasible photoelectrochemical (PEC) immunosensor was developed on the basis of the featured photocathode-photoanode operating system. In the proposal, the elaborated PEC immunosensor integrated photocathode with photoanode, and the immune recognition occurred just on the photocathode. To illustrate the performance, α-fetoprotein (AFP) was selected as a target antigen (Ag) for detection. TiO2 nanoparticles were decorated with AgInS2 quantum dots (AIS QDs) to fabricate the TiO2/AIS photoanode, and the carbon nanotubes (CNTs) were modified with CuInS2 nanoflowers (CIS NFs) to prepare the CNT/CIS photocathode for the capture AFP antibody (Ab) anchoring. Target Ag detection depended on significant decrease of the photocurrent signal produced by large steric hindrance of the captured AFP molecules. Coupling excellent photoelectric property with anti-interference ability in this elegant PEC immunosensor, sensitive and specific probing of target Ag was realized. The proposed photocathode-photoanode integrating strategy provides a promising way to explore other high-performance PEC immunosensors against the detection in biological matrixes.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , alfa-Fetoproteínas , Técnicas Eletroquímicas , Imunoensaio , Limite de Detecção
14.
Anal Chim Acta ; 1199: 339560, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35227381

RESUMO

Target biomarker detection with high accuracy in biological sample is necessary for the constructed immunoassays. Herein, a novel and enhanced cathodic immunosensor supported by photoanode was designed for sensitive and specific detection of human chorionic gonadotropin (HCG). Specifically, the electrode of TiO2 nanotube with N doping (TiO2:N) was fabricated and assembled with AgInS2 quantum dots (QDs) to acquire the TiO2:N/AgInS2 photoanode. For the sensing cathode, Pt nanoparticles (NPs) were decorated on carbon nanotubes (CNTs) to prepare the CNT/Pt cathodic matrix and was used to modify capture HCG antibody (Ab). In this photoelectrochemical (PEC) sensing system, the TiO2:N/AgInS2 photoanode served as the signal-converting element to produce prominent current signal, while the immune recognition events occurred on the sensing cathode to evidently change the initial current signal from steric hindrance effect. Profiting by excellent photoelectric property and good anti-interference ability of this featured PEC system, the developed cathodic immunosensor demonstrated high sensitivity and specificity for the detection of target HCG antigen (Ag). This photoanode-supported cathodic sensing strategy provided a potential path forward to exploit other enhanced PEC immunosensors in the application of biological samples.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Gonadotropina Coriônica , Técnicas Eletroquímicas , Eletrodos , Humanos , Imunoensaio , Limite de Detecção , Titânio/química
15.
Biosens Bioelectron ; 204: 114078, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35180689

RESUMO

Rabies is caused by the infection of Rabies virus, it leads to fatal encephalitis, developing a highly sensitive and specific detection method for Rabies virus remains a challenge. Herein, we report an electrochemiluminescence (ECL) biosensor for Rabies viral RNA based on dual-signal amplification and DNA nanotweezers (DTs). Dual-signal amplification process includes target binding induced isothermal amplification and CRISPR-based amplification. In the presence of target RNA, two assisted probes simultaneously hybridized with it to trigger isothermal amplification with the help of polymerase and nicking enzyme. This process generated a large amount of single-stranded DNA (ssDNA) as products. The products hybridized with CRISPR RNA to activate the trans-cleavage activity of Cas12a to indiscriminately cleave predesigned single-stranded trigger (ST) strands. After mixing the cleavage products with DTs and hemin molecules, DTs cannot be closed by cleaved ST strands to capture hemin to the electrode to quench the ECL signal. Therefore, the higher concentration of the target, the stronger intensity of the ECL signal. The detection limit is as low as 2.8 pM and the detection range is from 5 pM to 5 nM with excellent specificity and stability. The proposed method provides a promising strategy for Rabies detection, and can be easily adapted to other analytes via reasonable design as a valuable and versatile tool in bioanalysis.


Assuntos
Técnicas Biossensoriais , Raiva , Técnicas Biossensoriais/métodos , Sistemas CRISPR-Cas/genética , DNA/genética , Humanos , RNA Viral/genética , Raiva/genética
16.
ACS Sens ; 7(1): 3-20, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34989231

RESUMO

DNA nanotweezers (DTs) are reversible DNA nanodevices that can optionally switch between opened and closed states. Due to their excellent flexibility and high programmability, they have been recognized as a promising platform for constructing a diversity of biosensors and logic gates, as well as a versatile tool for molecular biology studies. In this review, we provide an overview of biosensing applications using DTs. First, the design and working principle of DTs are introduced. Next, the signal producing principles of DTs are summarized. Furthermore, biosensing applications of DTs for varying targets and purposes, both in buffers and complex biological environments, are highlighted. Finally, we provide potential opportunities and challenges for the further development of DTs.


Assuntos
Técnicas Biossensoriais , DNA , DNA/genética , Lógica
17.
Chem Commun (Camb) ; 58(4): 577-580, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34913936

RESUMO

Taking the maximum fluorescence of an identical fluorophore as a reference, a DNAzyme-based normalized strategy is developed to unify the output signals under external interferences. This makes it possible to directly quantify endogenous zinc in living cells by in situ fluorescence imaging, implying promising potential in fundamental study and early disease diagnosis.


Assuntos
DNA Catalítico/química , Fluorescência , Zinco/análise , DNA Catalítico/metabolismo , Humanos , Células MCF-7 , Imagem Óptica , Zinco/metabolismo
18.
J Sep Sci ; 45(1): 325-337, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34117714

RESUMO

Ionic chiral selectors have been received much attention in the field of asymmetric catalysis, chiral recognition, and preparative separation. It has been shown that the addition of ionic chiral selectors can enhance the recognition efficiency dramatically due to the presence of multiple intermolecular interactions, including hydrogen bond, π-π interaction, van der Waals force, electrostatic ion-pairing interaction, and ionic-hydrogen bond. In the initial research stage of the ionic chiral selectors, most of work center on the application in chromatographic separation (capillary electrophoresis, high-performance liquid chromatography, and gas chromatography). Differently, more and more attention has been paid on the spectroscopy (nuclear magnetic resonance, fluorescence, ultraviolet and visible absorption spectrum, and circular dichroism spectrum) and electrochemistry in recent years. In this tutorial review as regards the ionic chiral selectors, we discuss in detail the structural features, properties, and their application in chromatography, spectroscopy, and electrochemistry.

19.
Anal Chem ; 93(22): 7879-7888, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34038093

RESUMO

A nanoflare, a conjugate of Au nanoparticles (NPs) and fluorescent nucleic acids, is believed to be a powerful nanoplatform for diagnosis and therapy. However, it highly suffers from the nonspecific detachment of nucleic acids from the AuNP surface because of the poor stability of Au-S linkages, thereby leading to the false-positive signal and serious side effects. To address these challenges, we report the use of covalent amide linkage and functional Au@graphene (AuG) NP to fabricate a covalent conjugate system of DNA and AuG NP, label-rcDNA-AuG. Covalent coating of abundant amino groups (-NH2) onto the graphitic shell of AuG NP efficiently facilitates the coupling with carboxyl-labeled capture DNA sequences through simple, but strong, amide bonds. Importantly, such an amide-bonded nanoflare possesses excellent stability and anti-interference capability against the biological agents (nuclease, DNA, glutathione (GSH), etc.). By accurately monitoring the intracellular miR-21 levels, this covalent nanoflare is able to identify the positive cancer cells even in a mix of cancer and normal cells. Moreover, it allows for efficient photodynamic therapy of the targeted cancer cells with minimized side effects on normal cells. This work provides a facile approach to develop a superstable nanosystem showing promising potential in clinical diagnostics and therapy.


Assuntos
Grafite , Nanopartículas Metálicas , Amidas , Glutationa , Ouro
20.
Analyst ; 146(5): 1612-1619, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33605973

RESUMO

ß-Cyclodextrin (ß-CD) modified silver nanoparticles (AgNPs), denoted as ß-CD/AgNPs, were prepared by a simple one-pot method. Due to the inherent chirality of ß-CD, the developed ß-CD/AgNPs exhibited higher affinity toward l-tyrosine (l-Tyr) than d-tyrosine (d-Tyr), leading to serious aggregation of AgNPs in the presence of l-Tyr. Consequently, the l-Tyr induced aggregation of AgNPs can result in signal amplification in the differential pulse voltammograms (DPVs) of l-Tyr, which can be applied for the electrochemical chiral discrimination of the Tyr enantiomers. Other chiral amino acids including tryptophan and phenylalanine can also be successfully discriminated with the ß-CD/AgNPs, suggesting high universality of the developed chiral sensor.


Assuntos
Nanopartículas Metálicas , Prata , Aminoácidos , Estereoisomerismo , Triptofano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...